Crafting GBD-Net for Object Detection
نویسندگان
چکیده
The visual cues from multiple support regions of different sizes and resolutions are complementary in classifying a candidate box in object detection. Effective integration of local and contextual visual cues from these regions has become a fundamental problem in object detection. In this paper, we propose a gated bi-directional CNN (GBD-Net) to pass messages among features from different support regions during both feature learning and feature extraction. Such message passing can be implemented through convolution between neighboring support regions in two directions and can be conducted in various layers. Therefore, local and contextual visual patterns can validate the existence of each other by learning their nonlinear relationships and their close interactions are modeled in a more complex way. It is also shown that message passing is not always helpful but dependent on individual samples. Gated functions are therefore needed to control message transmission, whose on-oroffs are controlled by extra visual evidence from the input sample. The effectiveness of GBD-Net is shown through experiments on three object detection datasets, ImageNet, Pascal VOC2007 and Microsoft COCO. Besides the GBD-Net, this paper also shows the details of our approach in winning the ImageNet object detection challenge of 2016, with source code provided on https://github.com/craftGBD/craftGBD. In this winning system, the modified GBD-Net, new pretraining scheme and better region proposal designs are provided. We also show the effectiveness of different network structures and existing techniques for object detection, such as multi-scale testing, left-right flip, bounding box voting, NMS, and context.
منابع مشابه
Gated Bi-directional CNN for Object Detection
The visual cues from multiple support regions of different sizes and resolutions are complementary in classifying a candidate box in object detection. How to effectively integrate local and contextual visual cues from these regions has become a fundamental problem in object detection. Most existing works simply concatenated features or scores obtained from support regions. In this paper, we pro...
متن کاملReceptive Field Block Net for Accurate and Fast Object Detection
Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representation but suffering from high computational cost. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate ...
متن کاملContour Crafting Process Plan Optimization Part I: Single-Nozzle Case
Contour Crafting is an emerging technology that uses robotics to construct free form building structures by repeatedly laying down layers of material such as concrete. The Contour Crafting technology scales up automated additive fabrication from building small industrial parts to constructing buildings. Tool path planning and optimization for Contour Crafting benefit the technology by increasin...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملContour Crafting Process Plan Optimization Part II: Multi–Machine Cases
Contour Crafting is an emerging technology that uses robotics to construct free form building structures by repeatedly laying down layers of material such as concrete. The Contour Crafting technology scales up automated additive fabrication from building small industrial parts to constructing buildings. Tool path planning and optimization for Contour Crafting benefit the technology by increasin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on pattern analysis and machine intelligence
دوره شماره
صفحات -
تاریخ انتشار 2017